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Introduction

Type 2 Diabetes
Pancreas doesn’t 
produce sufficient 
amounts of insulin to 
regulate glucose / body is 
insulin-resistant ➝ 
excess glucose in blood

Credit: fundacionarlosslim.org



Context

people live with Type 
2 Diabetes on a daily 

basis

380 million
Invasive/Inaccurate

Current diagnosis 
equipment often 

produce false results 
(false “positives” and 

“negatives”)



Machine Learning

● ML enables machines to 
perform tasks with artificial 
intelligence 

● Multiple types for different 
purposes
○ K-Nearest Neighbors 

(KNN)
○ Logistic Regression (LR)
○ Decision Tree (DT)

● Input: diabetic parameter
● Output: diabetic condition



K-Nearest Neighbors
● Used for classification and 

regression problems
● Behaves like humans; affected by 

parameters that have neighboring or 
close values
○ Data classified into different 

categories based on proximity 
to one another

● Components - folds and nearest 
neighbors 

Credit: www.researchgate.net



Logistic Regression
● Used for regression problems
● Uses sigmoid and similar functions 

to the ones in Artificial Neural 
Networks; works in two different 
phases (training and testing)
○ Multiple functions carried out to 

produce output value from input 
values

● Components - learning rate and 
iterations/epochs

Credit: fusionanalysticsworld.com



Decision Tree
● Used for classification and 

regression problems
● Behaves like a tree; continually splits 

nodes at different levels to 
categorize input and branches off 
when close to predicting outputs
○ Gini index determines quality of 

split to ensure that outputs are 
accurate

● Components - maximum depth and 
minimum number of samples for 
node splitting 

Credit: mediumcom



Engineering Goal

Create three different types of ML algorithms that successfully predict binary 
outputs indicating a patient’s diabetic condition based on given input values

● Independent variables: differs 
for each ML algorithm type

● Dependent variables: 
accuracy rates

● Constant variables: folds 
(excluding KNN)

KNN DTLR

folds, 
neighbors

learning rate, 
iterations

max. depth, 
min. samples 

for node 
splitting



Methodology (KNN)

It’s a cold place. The 
planet is full of iron 

oxide dust

1. Calculate Euclidean 
Distance

2. Derive Nearest 
Neighbors

3. Predict outputs for 
testing dataset

Calculate distance 
between two rows in 
training dataset using 
euclidean_distance() 

function (d(x, y) = 
sqrt((x1 - y1)2 - (x2 - y2)2))

Calculate outputs for 
testing dataset using 
the K value from the 

training dataset and the 
max() function

a. Calculate distance 
between newly entered 
input and other training 

data input values

b. Compile top K value 
(nearest neighbors) 

based on the magnitude 
of the distances



Methodology (LR)

It’s a cold place. The 
planet is full of iron 

oxide dust

1. Develop Predicting 
Function

2. Predict coefficients 3. Predict outputs for 
testing dataset

Create simple 
framework of predicting 
function using sigmoid 
function, weights, and 

biases 

Calculate outputs for 
testing dataset using 

the coefficients of 
weights and biases from 

the training dataset

a. Predict values for the 
coefficients of weights 

and biases using 
random math function

b. Check values for 
costs/errors using 

stochastic gradient 
descent Costs absentCosts present



Methodology (DT)

1. Calculate Gini 
Index 2. Create a split 3. Build a 

“Tree”
4. Predict 
outputs 

Split training 
dataset into groups 
based on calculated 

Gini Index and 
check costs

Calculate Gini Index 
based on proportion 
and organization of 

groups (ideal: 0)

Create nodes other 
than the root ones 

and recursively 
split some of them 
for each data group

Predict outputs by 
navigating the tree 

through different 
nodes until the final 
output is produced 

for each input



Results (Figure 1)



Results (Figure 2)



Results (Figure 3)



Results (Figure 4)
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Trends

Logistic Regression was the most 
accurate of all the programs overall 

(78.04%)

KNN: Most accurate experimental 
group had 5 folds; most accurate 

program had 15 nearest neighbors 
(75.82%)

LR: Most accurate experimental 
group had 0.3 learning rate; most 

accurate program had same 
performance (78.04%)

DT: Most accurate experimental 
group had max. depth of 4; most 

accurate program had same 
performance (74.38%)



Data Analysis

● Multiple paired t-tests were conducted for statistical significance
○ All alternate hypotheses were rejected; the null hypotheses were accepted
○ Test with highest average accuracy rates of LR and KNN algorithms had 

most significance (4.432)
○ T-value was undefined for LR and DT algorithms as both had no variation 

in accuracy rates when changing their respective variables

Figure 5



Conclusion
Goal achieved
All the three ML algorithms 
successfully predicted outputs

Ideal KNN programs
Middle range of nearest 
neighbors, less folds

Ideal LT programs
Middle range of learning rate, 
iterations have no effect

Ideal DT programs
Middle range of max. depth, 
min. samples for node splitting 
has no effect



Future Recommendations

Testing other ML 
Algorithms

More types of Machine 
Learning algorithms 

(Naive Bayes, Support 
Vector Machines, etc.) 

and independent 
variables could be tested 

to improve accuracy 
rates

Hardware 
Implementation

Machine Learning 
algorithms could be 

implemented in sensory 
detection hardware 
prototypes to test 

practicality and other 
forms of effectiveness
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