The Early Detection v
of Type 2 Diabetes
Using Machine

Learning
Algorithms

Shridha Rajeswar
duPont Manual High School

Introduction

Type 2 Diabetes

Pancreas doesn’t
produce sufficient
amounts of insulin to
regulate glucose / body is
insulin-resistant —
excess glucose in blood

Credit: fundacionarlosslim.org

Context

Invasive/lnaccurate
380 million

Machine Learning

ML enables machines to
perform tasks with artificial
intelligence
Multiple types for different
purposes

o K-Nearest Neighbors

(KNN)

o Logistic Regression (LR)

o Decision Tree (DT)
Input: diabetic parameter
Output: diabetic condition

/

K-Nearest Neighbors

a kNN algorithm
k=1 k=3

e Used for classification and
regression problems

e Behaves like humans; affected by
parameters that have neighboring or

close values
o Data classified into different
categories based on proximity
to one another
e (omponents - folds and nearest L L
neighbors —_——

Credit: www.researchgate.net

Logistic Regression

e Used for regression problems

e Uses sigmoid and similar functions
to the ones in Artificial Neural
Networks; works in two different
phases (training and testing)

o Multiple functions carried out to
produce output value from input
values

e (Components - learning rate and

Probability (1/0)

Model Output

iterations/epochs

Credit: fusionanalysticsworld.com

Decision Tree

e Used for classification and
regression problems

decision nodes root node

salary at least
$50,000

e Behaves like a tree; continually splits
nodes at different levels to
categorize input and branches off
when close to predicting outputs

o Gini index determines quality of

split to ensure that outputs are STt —
accurate oholer
e (Components - maximum depth and .

minimum number of samples for Credit:mediumcom

node splitting

Engineering Goal

Create three different types of ML algorithms that successfully predict binary
outputs indicating a patient’s diabetic condition based on given input values

e Independent variables: differs
for each ML algorithm type

e Dependent variables:
accuracy rates

e (onstant variables: folds

(excluding KNN) folds, learning rate, max. depth,
neighbors iterations min. samples
fornode —

splitting

Methodology (KNN)

1. Calculate Euclidean
Distance

2. Derive Nearest
Neighbors

Calculate outputs for
testing dataset using
the K value from the
training dataset and the
max() function

Methodology (LR)

1. Develop Predicting 2. Predict coefficients
Function

Costs present

Calculate outputs for
testing dataset using
the coefficients of
weights and biases from
the training dataset

Methodology (DT)

1. Calculate Gini 2. Create a split
Index

4, Predict
outputs

Create nodes other
than the root ones
and recursively
split some of them
for each data group

Results (Figure 1)

Accuracy Rate vs. Number of Nearest Neighbors and Folds

W 5Folds [10 Folds
80

78

76

74 :
7 . . |
" B .

5 15 25

Number of Nearest Neighbors

Accuracy Rate (%)

N

Results (Figure 2)

Accuracy Rate vs. Learning Rate and Number of

Accuracy Rate (%)

@ 0.1 Learning Rate [0.3 Learning Rate ' 0.5 Learning Rate

80

79

78

77

76

75 -

78.04 78.04 78.04
77.65 77.6 77.65 77.6 77.65 77.65
1,000 5,000 20,000

Number of Epochs

Results (Figure 3)

Accuracy Rate vs. Maximum Depth and Minimum

B Max. Depthof 3 W Max. Depthof 4 | Max. Depth of 5
75 74:38- 74.387/1 5 74:38

74.12 73.99

74 73:33 73:33 73:33

73

72 , , ‘

7

70 ‘
7 9

Minimum Number of Samples for Node Splitting

-

Accuracy Rate (%)

Results (Figure 4)

Average Accuracy Rate vs. Algorithm Type

80
S 78
()]
3
S T8
®
3
3 74
<
S
g 72
4
<C

70

Logistic Regression Decision Tree

Algorithm Type

The Early Detection v
of Type 2 Diabetes
Using Machine

Learning
Algorithms

Shridha Rajeswar
duPont Manual High School

Introduction

Type 2 Diabetes

Pancreas doesn’t
produce sufficient
amounts of insulin to
regulate glucose / body is
insulin-resistant —
excess glucose in blood

Credit: fundacionarlosslim.org

Context

Invasive/lnaccurate
380 million

Machine Learning

ML enables machines to
perform tasks with artificial
intelligence
Multiple types for different
purposes

o K-Nearest Neighbors

(KNN)

o Logistic Regression (LR)

o Decision Tree (DT)
Input: diabetic parameter
Output: diabetic condition

/

K-Nearest Neighbors

a kNN algorithm
k=1 k=3

e Used for classification and
regression problems

e Behaves like humans; affected by
parameters that have neighboring or

close values
o Data classified into different
categories based on proximity
to one another
e (omponents - folds and nearest L L
neighbors —_——

Credit: www.researchgate.net

Logistic Regression

e Used for regression problems

e Uses sigmoid and similar functions
to the ones in Artificial Neural
Networks; works in two different
phases (training and testing)

o Multiple functions carried out to
produce output value from input
values

e (Components - learning rate and

Probability (1/0)

Model Output

iterations/epochs

Credit: fusionanalysticsworld.com

Decision Tree

e Used for classification and
regression problems

decision nodes root node

salary at least
$50,000

e Behaves like a tree; continually splits
nodes at different levels to
categorize input and branches off
when close to predicting outputs

o Gini index determines quality of

split to ensure that outputs are STt —
accurate oholer
e (Components - maximum depth and .

minimum number of samples for Credit:mediumcom

node splitting

Engineering Goal

Create three different types of ML algorithms that successfully predict binary
outputs indicating a patient’s diabetic condition based on given input values

e Independent variables: differs
for each ML algorithm type

e Dependent variables:
accuracy rates

e (onstant variables: folds

(excluding KNN) folds, learning rate, max. depth,
neighbors iterations min. samples
fornode —

splitting

Methodology (KNN)

1. Calculate Euclidean
Distance

2. Derive Nearest
Neighbors

Calculate outputs for
testing dataset using
the K value from the
training dataset and the
max() function

Methodology (LR)

1. Develop Predicting 2. Predict coefficients
Function

Costs present

Calculate outputs for
testing dataset using
the coefficients of
weights and biases from
the training dataset

Methodology (DT)

1. Calculate Gini 2. Create a split
Index

4, Predict
outputs

Create nodes other
than the root ones
and recursively
split some of them
for each data group

Results (Figure 1)

Accuracy Rate vs. Number of Nearest Neighbors and Folds

W 5Folds [10 Folds
80

78

76

74 :
7 . . |
" B .

5 15 25

Number of Nearest Neighbors

Accuracy Rate (%)

N

Results (Figure 2)

Accuracy Rate vs. Learning Rate and Number of

Accuracy Rate (%)

@ 0.1 Learning Rate [0.3 Learning Rate ' 0.5 Learning Rate

80

79

78

77

76

75 -

78.04 78.04 78.04
77.65 77.6 77.65 77.6 77.65 77.65
1,000 5,000 20,000

Number of Epochs

Results (Figure 3)

Accuracy Rate vs. Maximum Depth and Minimum

B Max. Depthof 3 W Max. Depthof 4 | Max. Depth of 5
75 74:38- 74.387/1 5 74:38

74.12 73.99

74 73:33 73:33 73:33

73

72 , , ‘

7

70 ‘
7 9

Minimum Number of Samples for Node Splitting

-

Accuracy Rate (%)

Results (Figure 4)

Average Accuracy Rate vs. Algorithm Type

80
S 78
()]
3
S T8
®
3
3 74
<
S
g 72
4
<C

70

Logistic Regression Decision Tree

Algorithm Type

Logistic Regression was the most

accurate of all the programs overall
(78.04%)

LR: Most accurate experimental
group had 0.3 learning rate; most
accurate program had same
performance (78.04%)

KNN: Most accurate experimental
group had 5 folds; most accurate
program had 15 nearest neighbors
(75.82%)

DT: Most accurate experimental
group had max. depth of 4; most
accurate program had same
performance (74.38%)

Data Analysis

Comparison (1 vs. 2)

Mean1 Mean 2 Variance1 Variance 2 T-value (observed) T-value (0.005 level) Hypothesis

9.925 Null accepted
9.925 Null accepted

9.925 Null accepted
Inconclusive (no variation)|

5 folds vs 10 folds (KNN) 74.51 72.98 1.903 2.642 1.243
0.3 learning rate vs. 5 folds 78.04 74.51 0 1.903 4.432
5 folds vs maximum depth of 4 74.51 74.38 1.903 0 0.1632
0.3 learning rate vs maximum depth of 4 78.04 74.38 0 0

Figure 5

e Multiple paired t-tests were conducted for statistical significance
o All alternate hypotheses were rejected; the null hypotheses were accepted
o Test with highest average accuracy rates of LR and KNN algorithms had

most significance (4.432)

o T-value was undefined for LR and DT algorithms as both had no variation
in accuracy rates when changing their respective variables

Conclusion

Goal achieved
All the three ML algorithms

successfully predicted outputs

Ideal KNN programs
Middle range of nearest
neighbors, less folds

Ideal LT programs

Middle range of learning rate,

iterations have no effect

Ideal DT programs

Middle range of max. depth,
. min. samples for node splitting

has no effect

Future Recommendations

More types of Machine
Learning algorithms
(Naive Bayes, Support
Vector Machines, etc.)
and independent
variables could be tested
to improve accuracy
rates

Machine Learning
algorithms could be
implemented in sensory
detection hardware
prototypes to test
practicality and other
forms of effectiveness

Acknowledgements

| would like to acknowledge my teacher, Ms. Kathy Fries and the website
Machine Learning Mastery by Mr. Jason Brownlee. Ms. Fries helped me in
researching a topic that was both enriching and suitable for me. The
website by Mr. Brownlee had many useful resources for coding ML
algorithms in Python, and some of the complex machine learning concepts
were broken down into simpler and more understable information.

Visuals of Code (KNN)

Load a CsV file
def load csv(filename) :
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader (file)
for row in csv_reader:
if not row:
continud
dataset.append (row)
return dataset

Convert string column to float
def str column to float(dataset, column):
for row in dataset:
row[column] = float (row[column].strip())

Convert string column to integer
def str column to_ int(dataset, column):
class_values = [row[column] for row in dataset]
unique = set(class_values)
lookup = dict()
for i, value in enumerate (unique):
lookup[value] = i
print('[%s] => %d' % (value, 1i))
for row in dataset:
row[column] = lookup[row[column]]
return lookup

Find the min and max values for each column
def dataset_minmax(dataset):
minmax = list()
for i in range(len(dataset[0])):
col values = [row[i] for row in dataset]
value min = min(col_values)
value max = max(col_values)
minmax.append([value min, value_max])
return minmax

Rescale dataset columns to the range 0-1
def normalize dataset(dataset, minmax):
for row in dataset:
for i in range(len(row)):
row[i] = (row[i] - minmax[i][0]) / (minmax[i][1]

Calculate the Euclidean distance between two vectors
def euclidean distance(rowl, row2):
distance = 0.0
for i in range(len(rowl)-1):
distance += (rowl[i] - row2[i]) **2
return sqrt(distance)

Locate the most similar neighbors
def get neighbors(train, test row, num neighbors):
distances = list()
for train row in train:
dist = euclidean distance(test row, train_row)
distances.append((train row, dist))
distances.sort (key=lambda tup: tup[1])
neighbors = list()
for i in range(num_neighbors):
neighbors.append (distances[i] [0])
return neighbors

- minmax[i] [0])

Visuals of Code (KNN)

Make a prediction with neighbors

def predict classification(train, test row, num neighbors):
neighbors = get neighbors(train, test row, num neighbors)
output values = [row[-1] for row in neighbors]
prediction = max(set (output values), key=output values.count)
return prediction

Make a prediction with KNN on Diabetes Dataset
filename = 'data.csv'
dataset = load csv(filename)
for i in range(len(dataset[0])-1):
str column to float(dataset, i)
convert class column to integers
str column to int(dataset, len(dataset[0])-1)
define model parameter
num neighbors = 5
define a new record
row = [120,74,10,0,64.9,0.15,35]
predict the label
label = predict classification(dataset, row, num neighbors)
print ('Data=%s, Predicted: %s' % (row, label))

Visuals of Code (LR)

Make a prediction with coefficients
def predict(row, coefficients):
yhat = coefficients[0]
for i1 in range(len(row)-1):
yhat += coefficients[i + 1] * rowl[i]
return 1.0 / (1.0 + exp(-yhat))

Estimate logistic regression coefficients using stochastic gradient descent
def coefficients sgd(train, 1 rate, n_epoch):
coef = [0.0 for i in range(len(train[0]))]
for epoch in range(n_epoch) :
sum_error = 0
for row in train:
yhat = predict(row, coef)
error = row[-1] - yhat
sum_error += error**2
coef[0] = coef[0] + 1 rate * error * yhat * (1.0 - yhat)
for i in range(len(row)-1):
coef[i + 1] = coef[i + 1] + 1 rate * error * yhat * (1.0 - yhat) * row[i]
print ('>epoch=%d, lrate=%.3f, error=%.3f' % (epoch, 1 rate, sum error))
return coef

Visuals of Code (LR)

m# Make a prediction
from math import exp

Make a prediction with coefficients
def predict(row, coefficients):
yhat = coefficients[0]
for i in range(len(row)-1):
yhat += coefficients[i + 1] * row[i]
return 1.0 / (1.0 + exp(-yhat))

test predictions
dataset = [
[2.7810836,2.550537003,0],
[1.465489372,2.362125076,0],
[3.396561688,4.400293529,0],
[1.38807019,1.850220317,0],
[3.06407232,3.005305973,0],
[7.627531214,2.759262235,1],
[5.332441248,2.088626775,1]
1
coef = [-1.5495305815023432, 2.6929943470390043, -3.9818757514207848]
for row in dataset:
yhat = predict (row, coef)
print ("Expected=%.3f, Predicted=%.3f [%d]" % (row[-1], yhat, round(yhat)))

Visuals of Code (DT)

m# Split a dataset based on an attribute and an attribute value
def test split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append (row)

else:
right.append (row)
return left, right

Calculate the Gini index for a split dataset
def gini_index(groups, classes):
count all samples at split point
n_instances = float(sum([len(group) for group in groups]))
sum weighted Gini index for each group
gini = 0.0
for group in groups:
size = float(len(group))
avoid divide by zero
if size == 0:
continue
score = 0.0
score the group based on the score for each class
for class val in classes:
p = [row[-1] for row in group].count(class val) / size
score += p * p
weight the group score by its relative size
gini += (1.0 - score) * (size / n_instances)
return gini

Visuals of Code (DT)

Select the best split point for a dataset
def get split(dataset):
class_values = list(set(row[-1] for row in dataset))
b_index, b _value, b _score, b _groups = 999, 999, 999, None
for index in range (len(dataset[0])-1):
for row in dataset:

groups = test split(index, row[index], dataset)

gini = gini_index(groups, class_values)

if gini < b_score:

b_index, b_value, b_score, b _groups = index, row[index], gini, groups

return {'index':b_index, 'value':b value, 'groups':b_groups}

Create a terminal node value
def to_terminal (group) :
outcomes = [row[-1] for row in groupl]
return max (set (outcomes), key=outcomes.count)

Visuals of Code (DT)

Create child splits for a node or make terminal
def split(node, max depth, min size, depth):
left, right = node['groups']
del (node['groups'])
check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal (left + right)
return
check for max depth
if depth >= max depth:
node['left'], node['right'] = to_terminal (left), to_terminal (right)
return
process left child
if len(left) <= min size:
node['left'] = to_terminal (left)

else:
node['left'] = get split(left)
split(node['left'], max depth, min size, depth+l)
process right child
if len(right) <= min size:
node['right'] = to_terminal (right)
else:
node['right'] = get_split(right)
split(node['right'], max depth, min size, depth+l)

Build a decision tree

def build tree(train, max depth, min size):
root = get split(train)
split(root, max depth, min size, 1)
return root

Visuals of Code (DT)

Print a decision tree
def print tree(node, depth=0):
if isinstance(node, dict):

else:

print ('%s[X%d < %.3f]"

% ((depth*' *,

print tree(node['left'], depth+l)
print tree(node['right'], depth+l)

print('%s[%s]’

% ((depth*’

', node)))

(node['index']+1l), node['value'])))

Visuals of Code (DT)
Print a decision tree

def print tree(node, depth=0):
if isinstance(node, dict):
print('%s[X%d < $.3f]"' % ((depth*' ', (node['index']+1l), node['value'])))
print tree(node['left'], depth+l)
print tree(node['right'], depth+l)

else:
print('%s[%s]' % ((depth*' ', node)))

H Make a prediction with a decision tree
def predict(node, row):
if row[node['index']] < node['value']:
if isinstance(node['left'], dict):
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']

Logistic Regression was the most

accurate of all the programs overall
(78.04%)

LR: Most accurate experimental
group had 0.3 learning rate; most
accurate program had same
performance (78.04%)

KNN: Most accurate experimental
group had 5 folds; most accurate
program had 15 nearest neighbors
(75.82%)

DT: Most accurate experimental
group had max. depth of 4; most
accurate program had same
performance (74.38%)

Data Analysis

Comparison (1 vs. 2)

Mean1 Mean 2 Variance1 Variance 2 T-value (observed) T-value (0.005 level) Hypothesis

9.925 Null accepted
9.925 Null accepted

9.925 Null accepted
Inconclusive (no variation)|

5 folds vs 10 folds (KNN) 74.51 72.98 1.903 2.642 1.243
0.3 learning rate vs. 5 folds 78.04 74.51 0 1.903 4.432
5 folds vs maximum depth of 4 74.51 74.38 1.903 0 0.1632
0.3 learning rate vs maximum depth of 4 78.04 74.38 0 0

Figure 5

e Multiple paired t-tests were conducted for statistical significance
o All alternate hypotheses were rejected; the null hypotheses were accepted
o Test with highest average accuracy rates of LR and KNN algorithms had

most significance (4.432)

o T-value was undefined for LR and DT algorithms as both had no variation
in accuracy rates when changing their respective variables

Conclusion

Goal achieved
All the three ML algorithms

successfully predicted outputs

Ideal KNN programs
Middle range of nearest
neighbors, less folds

Ideal LT programs

Middle range of learning rate,

iterations have no effect

Ideal DT programs

Middle range of max. depth,
. min. samples for node splitting

has no effect

Future Recommendations

More types of Machine
Learning algorithms
(Naive Bayes, Support
Vector Machines, etc.)
and independent
variables could be tested
to improve accuracy
rates

Machine Learning
algorithms could be
implemented in sensory
detection hardware
prototypes to test
practicality and other
forms of effectiveness

Acknowledgements

| would like to acknowledge my teacher, Ms. Kathy Fries and the website
Machine Learning Mastery by Mr. Jason Brownlee. Ms. Fries helped me in
researching a topic that was both enriching and suitable for me. The
website by Mr. Brownlee had many useful resources for coding ML
algorithms in Python, and some of the complex machine learning concepts
were broken down into simpler and more understable information.

Visuals of Code (KNN)

Load a CsV file
def load csv(filename) :
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader (file)
for row in csv_reader:
if not row:
continud
dataset.append (row)
return dataset

Convert string column to float
def str column to float(dataset, column):
for row in dataset:
row[column] = float (row[column].strip())

Convert string column to integer
def str column to_ int(dataset, column):
class_values = [row[column] for row in dataset]
unique = set(class_values)
lookup = dict()
for i, value in enumerate (unique):
lookup[value] = i
print('[%s] => %d' % (value, 1i))
for row in dataset:
row[column] = lookup[row[column]]
return lookup

Find the min and max values for each column
def dataset_minmax(dataset):
minmax = list()
for i in range(len(dataset[0])):
col values = [row[i] for row in dataset]
value min = min(col_values)
value max = max(col_values)
minmax.append([value min, value_max])
return minmax

Rescale dataset columns to the range 0-1
def normalize dataset(dataset, minmax):
for row in dataset:
for i in range(len(row)):
row[i] = (row[i] - minmax[i][0]) / (minmax[i][1]

Calculate the Euclidean distance between two vectors
def euclidean distance(rowl, row2):
distance = 0.0
for i in range(len(rowl)-1):
distance += (rowl[i] - row2[i]) **2
return sqrt(distance)

Locate the most similar neighbors
def get neighbors(train, test row, num neighbors):
distances = list()
for train row in train:
dist = euclidean distance(test row, train_row)
distances.append((train row, dist))
distances.sort (key=lambda tup: tup[1])
neighbors = list()
for i in range(num_neighbors):
neighbors.append (distances[i] [0])
return neighbors

- minmax[i] [0])

Visuals of Code (KNN)

Make a prediction with neighbors

def predict classification(train, test row, num neighbors):
neighbors = get neighbors(train, test row, num neighbors)
output values = [row[-1] for row in neighbors]
prediction = max(set (output values), key=output values.count)
return prediction

Make a prediction with KNN on Diabetes Dataset
filename = 'data.csv'
dataset = load csv(filename)
for i in range(len(dataset[0])-1):
str column to float(dataset, i)
convert class column to integers
str column to int(dataset, len(dataset[0])-1)
define model parameter
num neighbors = 5
define a new record
row = [120,74,10,0,64.9,0.15,35]
predict the label
label = predict classification(dataset, row, num neighbors)
print ('Data=%s, Predicted: %s' % (row, label))

Visuals of Code (LR)

Make a prediction with coefficients
def predict(row, coefficients):
yhat = coefficients[0]
for i1 in range(len(row)-1):
yhat += coefficients[i + 1] * rowl[i]
return 1.0 / (1.0 + exp(-yhat))

Estimate logistic regression coefficients using stochastic gradient descent
def coefficients sgd(train, 1 rate, n_epoch):
coef = [0.0 for i in range(len(train[0]))]
for epoch in range(n_epoch) :
sum_error = 0
for row in train:
yhat = predict(row, coef)
error = row[-1] - yhat
sum_error += error**2
coef[0] = coef[0] + 1 rate * error * yhat * (1.0 - yhat)
for i in range(len(row)-1):
coef[i + 1] = coef[i + 1] + 1 rate * error * yhat * (1.0 - yhat) * row[i]
print ('>epoch=%d, lrate=%.3f, error=%.3f' % (epoch, 1 rate, sum error))
return coef

Visuals of Code (LR)

m# Make a prediction
from math import exp

Make a prediction with coefficients
def predict(row, coefficients):
yhat = coefficients[0]
for i in range(len(row)-1):
yhat += coefficients[i + 1] * row[i]
return 1.0 / (1.0 + exp(-yhat))

test predictions
dataset = [
[2.7810836,2.550537003,0],
[1.465489372,2.362125076,0],
[3.396561688,4.400293529,0],
[1.38807019,1.850220317,0],
[3.06407232,3.005305973,0],
[7.627531214,2.759262235,1],
[5.332441248,2.088626775,1]
1
coef = [-1.5495305815023432, 2.6929943470390043, -3.9818757514207848]
for row in dataset:
yhat = predict (row, coef)
print ("Expected=%.3f, Predicted=%.3f [%d]" % (row[-1], yhat, round(yhat)))

Visuals of Code (DT)

m# Split a dataset based on an attribute and an attribute value
def test split(index, value, dataset):
left, right = list(), list()
for row in dataset:
if row[index] < value:
left.append (row)

else:
right.append (row)
return left, right

Calculate the Gini index for a split dataset
def gini_index(groups, classes):
count all samples at split point
n_instances = float(sum([len(group) for group in groups]))
sum weighted Gini index for each group
gini = 0.0
for group in groups:
size = float(len(group))
avoid divide by zero
if size == 0:
continue
score = 0.0
score the group based on the score for each class
for class val in classes:
p = [row[-1] for row in group].count(class val) / size
score += p * p
weight the group score by its relative size
gini += (1.0 - score) * (size / n_instances)
return gini

Visuals of Code (DT)

Select the best split point for a dataset
def get split(dataset):
class_values = list(set(row[-1] for row in dataset))
b_index, b _value, b _score, b _groups = 999, 999, 999, None
for index in range (len(dataset[0])-1):
for row in dataset:

groups = test split(index, row[index], dataset)

gini = gini_index(groups, class_values)

if gini < b_score:

b_index, b_value, b_score, b _groups = index, row[index], gini, groups

return {'index':b_index, 'value':b value, 'groups':b_groups}

Create a terminal node value
def to_terminal (group) :
outcomes = [row[-1] for row in groupl]
return max (set (outcomes), key=outcomes.count)

Visuals of Code (DT)

Create child splits for a node or make terminal
def split(node, max depth, min size, depth):
left, right = node['groups']
del (node['groups'])
check for a no split
if not left or not right:
node['left'] = node['right'] = to_terminal (left + right)
return
check for max depth
if depth >= max depth:
node['left'], node['right'] = to_terminal (left), to_terminal (right)
return
process left child
if len(left) <= min size:
node['left'] = to_terminal (left)

else:
node['left'] = get split(left)
split(node['left'], max depth, min size, depth+l)
process right child
if len(right) <= min size:
node['right'] = to_terminal (right)
else:
node['right'] = get_split(right)
split(node['right'], max depth, min size, depth+l)

Build a decision tree

def build tree(train, max depth, min size):
root = get split(train)
split(root, max depth, min size, 1)
return root

Visuals of Code (DT)

Print a decision tree
def print tree(node, depth=0):
if isinstance(node, dict):

else:

print ('%s[X%d < %.3f]"

% ((depth*' *,

print tree(node['left'], depth+l)
print tree(node['right'], depth+l)

print('%s[%s]’

% ((depth*’

', node)))

(node['index']+1l), node['value'])))

Visuals of Code (DT)
Print a decision tree

def print tree(node, depth=0):
if isinstance(node, dict):
print('%s[X%d < $.3f]"' % ((depth*' ', (node['index']+1l), node['value'])))
print tree(node['left'], depth+l)
print tree(node['right'], depth+l)

else:
print('%s[%s]' % ((depth*' ', node)))

H Make a prediction with a decision tree
def predict(node, row):
if row[node['index']] < node['value']:
if isinstance(node['left'], dict):
return predict(node['left'], row)
else:
return node['left']
else:
if isinstance(node['right'], dict):
return predict(node['right'], row)
else:
return node['right']

