
AI TIC-TAC-TOE KAS 2021

BY: EDWARD KIM

A C# SYSTEM SOFTWARE
PROJECT

Made with the
Unity Engine
(V 2020.2)

Abstract
My research question was which type of general competitive AI, which I

assigned as ASAI (attack strategy AI), DSAI (defense strategy AI), and AaDSAI
(attack and defense strategy AI) was the most efficient. Though most of AI you
think “learns”, my level of AI is very simple and requires no training, with just
simple C# algorithms. Although this might not be as progressive, this is the first
fundamental step in order to think about beyond logic and think about machine
learning. This research can have various societal impact such as increasing the
success chance of a human through business and society in careers (like chess
where it increases a human's critical thinking and learning). Or it can even be a
virtual learning friend or coach that can train students to learn how to do an
adversarial task, where it goes against the learner. And, in future generations,
people can then extensively develop the virtual learning buddy/ teacher to adapt to
the learner’s capabilities and weak/strong areas of knowledge and challenge the
learners on their weak spots, then teach them how to do things on those weak
spots based on their "attack"/"defense" strategy knowledge.

Introduction to AI-The Basics
The term AI is rooted from basic computer

science and automation. Most advanced AI
include these characteristics:
-Takes in an input
-Outputs information as an action
-Converts these inputs into numeral values
-Stores values in a data library and ”learns”
from it

Such examples include Siri, Tesla
Autopilot, Google Home, Waymo Autopilot,
Google Ads, and many more. Siri in particular
uses suggestions from [frequent] human input,
which they set as the database. For instance, if
a person asks Siri to find online images of cars,
you will find images of cars. AI use ML
(Machine Learning)/DL (Deep Learning)
algorithms to “learn”.

Figure 0 [1.0]

Introduction to AI-Levels of AI
-ANI (Artificial Narrow Intelligence) specializes in
few types of inputs/outputs
-AGI (Artificial General Intelligence): much
smarter and can take distinct types of
inputs/outputs, which we are studying today.
-Hypothetical ASI (Artificial Super Intelligence),
has highest intellect than one of the most acute
humans and will be known to have “machine
consciousness,” and do not require human input.

Some believe when we reach a point of AI where
it has a mind of its own, it might be the greatest
achievement, but also the last achievement, where AI
could override human supervision and cause calamity.
Others believe it will be extremely impactful on our
daily lives, and they could do hard tasks just for us in a
matter of seconds, while it takes days for us humans.

Introduction to AI-Learning
-Machine learning (ML)- AI uses algorithms to interpret data
and predict patterns.
-Deep learning (DL)- AI has much more advanced
intelligence, can mimic a human neural network [2], and can
do more things by themselves.
-Figure 1[1.1] represents a neural network [2] : each of the
balls are called neurons, each associating with a weight
(w)[2]. They act very similar to human neurons and gave us a
better idea of how they work. In the input layer [2], they put in
[human] inputs;
-Back prorogation
-hidden layer(s) [2], the inputs can go through extraction
processes, organizational segregation from the extracted
data, and other methods of data orientation/interpretations.

-Figure 2[1.2] represents of the relationship of a human
They act like a mathematical function, and most inputs can be converted to numbers. For each neuron in the hidden layer [2], valued -1 to

1, they look for specific components, which are in their data library, from the input. The neurons of the next hidden layer [2] may look for more
complicated components. However, this may take more time to compute, and can take up much energy. So, there are….

-deep neural networks [2], with DL: there are more hidden layers [2] which use multiple/more ways to find a specific component(s), such
as including the backward propagation.
-output layer[2]: they give out the output and does an action out of those outputs

-The sum of the output neurons must be equal 1

Figure 2

Figure 1

Introduction to AI-Activation Functions
Usually, the activation functions [3] are added to support a neural network [2] to adapt to patterns from

the data, with non-linearity. These functions are for converting inputs into numbers in a specific range, or
associates with the numbers. There are multiple features an activation function [3] has:

-vanishing gradient problem: the activation shifting towards 0 because of the decrease of the output
through a back prorogation
-zero-centered: the output of the activation function [3] does not go towards 0 and gradients do not shift
-computationally expensive: activation functions [3] are required in every neuron in every layer

There are multiple activation functions [3] used:

-Sigmoid: sig(t)=1/(1+e^(-t); receives real-valued inputs and interprets between 0 and 1; it is
computationally expensive and causes the vanishing gradient problem/not zero-centered
-Hyperbolic Tangent (Tanh): an extent to the Sigmoid but is zero-centered
-Softmax: checks if that the sum of all of the neurons in the output layer[2] is equal to 1
-Rectified Linear Unit (ReLU): f(x)=max(0,x); widely used; does not have the vanishing gradient
problem; not zero-centered, and some of the neurons “die out” (“dying ReLU” problem), and do not
react to the input/output
-Perimetric (PReLU)/Leaky ReLU: f(x)=max(αx,x); Leaky ReLU solves the “dying ReLU” partly; become
a linear function if α = 1, thus α is never close to 1; if α is a hyperparameter (parameter that controls the
learning), it becomes the PReLU
-ReLU6: f(x)=min(max(0,x),6);

Introduction to AI-Not All AI are Advanced
However, AI can much simpler than these implications, such as a

simple algorithm(s) for playing a role in Tic-Tac-Toe for
attacking/defending, which is my experiment for my research. Or a
television device that turns on when their audio sensors detect the word
“TV,” which can be refactored into a simple software algorithm with no
learning. Some AI do not ML/DL.

General Software Structure
The software is built through the Unity software and is controlled through scenes and asset

objects (with .meta files including data of their components and settings), mainly the
GameManager.cs C# script. It controls and calls the algorithms of my software and transitions their
turns and configures the values for the fields/functions required for the algorithms, such as the
Cycle: int, specificCell[1-9]Empty: string, boolCell[1-9]Empty: bool, mode: string, Fill[1~9](whichAI),
and others included in the Solution Outline[1,2] slides. There are 6 scenes: “Main Menu”, “Options
Menu”, “Game”, “subGameType”, and “END”. The GameManager.cs script is executed in the
“Game” scene, the “subGameType” scene is where you pick the gamemode, and the “Main Menu”
scene is where you proceed to the “Game” or “Options Menu”/“subGameType” scene. Finally, the
“END” scene is where they show the results, as well as the renderings and shows the variable
value of strand: string, which are a combination of all the variables in the GameManager.cs script.

For the main cell moderations, there are 9 cells, all which are labeled by their numeric
value. The specificCell[1-9]Empty fields can be 5 possible string values: “filledbyASAI”,
“filledbyDSAI”, “filledbyAaDSAI”, “yes”, and null. The boolCell[1-9]Empty fields can be, of course, 3
possible values: true, false, and null. By these values, the “Cell[1-9]Render” game objects in the
“Game” scene can render the assigned sprite constant “E” if it’s representing variable equals “yes”,
“X” if it is equal “filledbyASAI”, “O” if it is equal “filledbyDSAI”, and “B” if it is equal
“filledbyAaDSAI”. The strand is debugged in the software execution routine and appears in the
“END” scene.

Solution/Project Hierarchy

https://ibb.co/GngJphN
https://docs.microsoft.com/en-us/visualstudio/ide/reference/generate-field-property-local?view=vs-2019
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/local-functions

Methodology
The data/results will be recorded through points, as where if an

AI wins, it will gain 1 point; loses 1 point if it is defeated; neither gain
or lose points if a tie occurs. There will be graphs in forms of
win/lose average, first/second point difference, and simple point
count bar graphs, recorded in a Google Sheets [total, f/s, avg] and
Docs documents. Furthermore, negative points are tolerated.

Win/Lose Average Method:
80

[AI]
Pt total

f(AI)Avg =W/L

First/Second Pt Differ Method: Differ =
1st/2nd f(AI) Pt total 1st = ([AI]andDSAI) + ([AI]andAaDSAI)

+ ([AI]andASAI) - ([AI]and[AI])

[AI] Total [AI] Total

[AI] Total[AI] Total

f(AI) Pt total 2nd = (DSAIand[AI]) + (AaDSAIand[AI])
+ (ASAIand[AI) - ([AI]and[AI])

[AI] Total [AI] Total

[AI] Total[AI] Total

Total Method f(AI) = f(AI) + f(AI) Total Pt total 1st Pt total 2nd

https://docs.google.com/spreadsheets/d/1sw8iuXWkVQm6yqugaDjQnAV_NHKWcaJ3ecU0HemFLGE/edit
https://docs.google.com/spreadsheets/d/1sP6anVEgxmIx0SSFKFye0-_GynmZqodvl7FLQgqUt5M/edit
https://docs.google.com/spreadsheets/d/1AzKz52RBS4M_mHoB0M01iLGhPytheJMUueHC9jHNoMA/edit
https://docs.google.com/document/d/1Nfxz_D2RvG8WyIYdg6xDiaTmr7UuFQ64Qo37gsP_i74/view

Procedure
[1]: Run my Unity-built software
[2]: Pick the desired game mode, 20 times each;
[3]: Record them onto the Google Sheets [total, f/s, avg] and Google Docs.

Procedure
Walkthrough

https://docs.google.com/spreadsheets/d/1sw8iuXWkVQm6yqugaDjQnAV_NHKWcaJ3ecU0HemFLGE/edit
https://docs.google.com/spreadsheets/d/1sP6anVEgxmIx0SSFKFye0-_GynmZqodvl7FLQgqUt5M/edit
https://docs.google.com/spreadsheets/d/1AzKz52RBS4M_mHoB0M01iLGhPytheJMUueHC9jHNoMA/edit
https://docs.google.com/document/d/1Nfxz_D2RvG8WyIYdg6xDiaTmr7UuFQ64Qo37gsP_i74/view

Solution Outline (1)
Execution
Routine
(through the
Unity Event
Function
Update())

checkif(no args) function for checking if all cells are filled,
another condition that the execution routine can use for
ending the game and proceeding to the END scene

Fields (variables/constants)

https://docs.unity3d.com/2021.1/Documentation/Manual/EventFunctions.html

Solution Outline (2)
FillCell(string whichAI) Functions

CheckWhoWon(no args) Function (excerpt)

Algorithm

ASAI Algorithm

DSAI Algorithm

AaDSAI Algorithm

The AI Algorithms depend on the gamemode, the current cycle (ex: if the ASAI Algorithm and
DSAI Algorithm is executed, the cycle is increased by 1)m what cells are filled and not filled by a
specific AI(s). There are 3 Algorithms for 3 AIs: ASAI (attack AI), DSAI (defense AI), and AaDSAI
(Attack/Defense AI). Their algorithms are sometimes applied in a slightly different order depending
on the gamemode.

ASAI algorithm:
-[1,2]: fills the center cell (cell 5) if it is empty, but if it is already filled, it fills a random cell
-[3,4,5]: it uses multiple conditions to generate its next move, which it’s main goal is winning.

One example of a condition listed in my ASAIScript.cs is:
//[...truncated…]
else if (II && III && si == "yes"){ GameManager.Fill1("ASAI"); }
//[...truncated…]

https://drive.google.com/file/d/1rWfRuK5CvC9smR0GFdxt-e5DvIs8UhgK/view?usp=sharing

Algorithm

ASAI Algorithm

DSAI Algorithm

AaDSAI Algorithm

DSAI algorithm:
- similar to the ASAI algorithm, except that for the conditions, it doesn't use plain bool

variables, such as the used II and III fields, instead it moderates conditions for the cell where
if it is NOT filled by the DSAI and it is NOT empty. I have implemented this because it will
then defend against itself, and this can interfere with my algorithm and cause various bugs.

- instead of assigning the only argument “ASAI” of the void function
GameManager.Fill(1), I would assign the argument “DSAI” instead, since it would act like the
ASAI if not careful.

//[...truncated…]
//horizontal

//1,2,3
if (I && II && siii == "yes"){ GameManager.Fill3("AaDSAI"); Debug.Log("FILLED")}
else if (I && III && sii == "yes"){ GameManager.Fill2("AaDSAI"); Debug.Log("FILLED");}
//[...truncated…]

Algorithm

ASAI Algorithm

DSAI Algorithm

AaDSAI Algorithm

AaDSAI algorithm:

- The combination of the ASAI and DSAI algorithm, except for each cycle, they do the DSAI
strategy part first and then the ASAI strategy part

- Example conditional of algorithm:

//[...truncated…]
//horizontal

//1,2,3
if (I && II && siii == "yes"){ GameManager.Fill3("AaDSAI"); Debug.Log("FILLED")}
else if (I && III && sii == "yes"){ GameManager.Fill2("AaDSAI"); Debug.Log("FILLED");}
//[...truncated…]
else { else if (I && IV && svii == "yes") {GameManager.Fill7("AaDSAI");} //[...truncated…]}

Results

Results

Results

Results

Results

Results

Results

Results Summary (TABLE)
Graph 2Graph 1

Example Results

Win (ASAI)

Gamemode: DSAI|ASAI Gamemode: ASAI|DSAI

Gamemode: ASAI|DSAIGamemode: ASAI|DSAI

Win (AaDSAI)
Gamemode: AaDSAI|DSAI

Gamemode: DSAI|AaDSAI
Tie(ASAI|DSAI)

Tie (AaDSAI|DSAI)

Gamemode: AaDSAI|DSAI

Rare/“Accidental” Win (DSAI)

Conclusion
In conclusion, based on my results, the AaDSAI has the most

points and win/lose average, thus we should target attack/defense
strategy competitive AIs as we move forward. As I hypothesized, this
was correct, since it provides multiple functions for multiple
concurrencies in a normal tic-tac-toe game, instead of limited
fundamentals of a competitive/logical game. Some very important
variables we should consider when creating competitive AI logic
systems are which system/AI goes first in an experiment associating
with logical games, such as Tic Tac Toe, Chess, and many others. This
significantly changed the results of which AI wins, as shown in the
graph 2 of the Results slide. Another variable we should consider is
that humans do not have a constant skill level, so in experiments that
are associated with competing with an AI, the AI’s skill evaluation will
be very inaccurate. Though I have concluded based on my data
analysis, there may be limitations to my results, as there may be
unintentional bugs, though it occurred rarely in my software. To be
safe, I did not count the occasions.

Future Studies
In future studies, more advanced topics can be explored, such as

number character recognition, using various conditionals for
searching a specific number character. There can be image
simplification of turning the input images into black/white images,
then doing image comparison of the amount of pixels matching/the
total resolution to the dataset image. Each of the 9 input images is
defined as a list of bool variables representing each pixel (black = true;
white equals false), can be implemented. The ideas and methods are
limitless. Image processing through learning with a
dataset/comparing the dataset image to the input image, and image
processing without learning with specific code for each digit methods
can be compared.

Bibliography
[1.0]: HCAI (Human-Centered.AI)

[1.1]: neuralnetworksanddeeplearning.com/chap1

[1.2]: Neural Network image: cs231n by Stanford

[2]: purnasai gudikandula: A Beginner Intro to Neural Networks

[3]: towards data science.com- “Everything you need to know about
‘Activation Functions’ in Deep learning models”

