Developing a web-based Convolutional Neural Network based on Supervised Deep Learning for the rapid and accurate diagnosis of Pulmonary Tuberculosis via Chest X-rays

Background information

10 million **infected** 1.5 million **dead Every year**

(Tuberculosis (TB), 2020)

Tuberculosis

- Bacterial disease with two variants Latent TB and TB disease.
- Latent TB is an infection that can occur anywhere in the body, and it is very common.
- If Latent TB is left untreated or the patient is immunocompromised, it can progress.
- The situation is getting worse over time

(Latent tb infection, 2020)

Pulmonary Tuberculosis (PTB)

- Constitutes a significant portion of TB disease cases.
- **Highly** infectious
- Has been widely out of control for over **100** years, especially in the developing world.

(Millard, Mugarte-Gil, & Moore, 2015)

Issues with the method of testing for PTB

- Lack of modern, inexpensive, and accurate testing methods
- Smear Microscopy
 - Highly inaccurate approx. 50% of results are wrong
 - Large time delay (at least 2 weeks)
 - Massive logistical challenges
 - Expensive

(Nardell, 2015) (Hwang et al., 2018)

Deep Learning

- Deep Learning is a subset of Artificial Intelligence, and is a powerful form of data analysis.
- It can be used in the field of testing for PTB quite easily

(Chen et al., 2019)

Engineering Goal

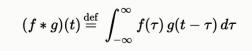
- To build a Deep Learning model based on chest x-rays and integrate it into a web application so as to make it accessible.
- An 80% accuracy rate and 100% upload success rate are the goals of this project.
- The final product should allow users to get on, upload a chest x-ray, and get the PTB result with a click of a button

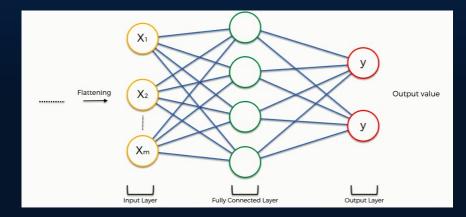
Shortcomings of previous research

- Using Deep Learning algorithms on numerical data rather than chest x-rays
- Not considering accessibility

Development

Convolutional Neural Network


 The deep learning algorithm used in this project was a Convolutional Neural Network



(Chen et al., 2019)

Training the algorithm

- 1) Convolution function
- 2) Activation Function (ReLU in this case)
- 3) Pooling
- 4) Flattening
 - **Full Connection**

(Chen et al., 2019)

Training the algorithm (cont.)

- National Library of Medicine website
- 750 de-identified chest x-rays
- Python, Tensorflow, Keras

Building the web application

- To develop the overall application, I used HTML, CSS, Bootstrap.
- In addition, I used the Flask web framework to integrate the model within the web application
- I also integrated an addition algorithm to decide whether or not a chest x-ray was being uploaded.

Project details

Design and Method

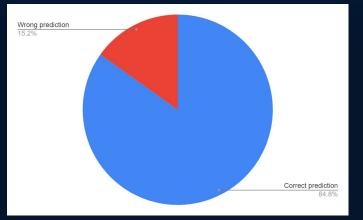
- I used a Non-Experimental Engineering Design
- Engineering method for AI Development
 - A custom method developed to suit this project
 - Involves developing the AI component first and then any other components, and then integrating them.

(Hwang et al., 2019)

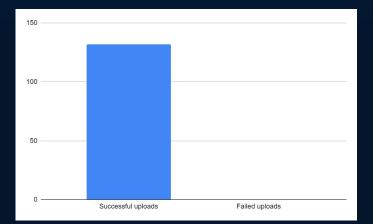
Data collection

 Data was collected and recorded in the format as shown below

File name	Positive/Negative	Trial 1 result (Prediction & Upload Status)	Trial 2 result (Prediction & Upload Status)	Trial 3 result (Prediction & Upload Status)	Trial 4 result (Prediction & Upload Status)	Trial 5 result (Prediction & Upload Status)	Overall result
CHNCXR_0000_1	Positive	Positive	Positive	Positive	Positive	Positive	Positive
		Success	Success	Success	Success	Success	Success


A note about Statistical Analysis


- My data is mostly qualitative as shown on the previous slide.
- No explicit statistics was performed



Results

- Accuracy: 85%
- Upload success rate: 100%
- False positives: 14% of errors, False negatives: 1% of errors
- Second algorithm accuracy: 98%¹

A bar graph of successful vs failed uploads

Conclusion

- The engineering goal was met
- Higher upload success rate than expected
- More false positives than false negatives

Website/Code Demonstration

Future directions

- Improving the accuracy of the model by training it on more data
- Making cross-platform versions of the app
- Making the app capable of operating completely offline.

Thank you for your time!

Works cited

- Barberis, I., Bragazzi, N. L., Galluzzo, L., & Martini, M. (2017). The history of tuberculosis: from the first historical records to the isolation of Koch's bacillus. Journal of preventive medicine and hygiene, 58(1), E9–E12.
- Chen, D., Liu, S., Kingsbury, P., Sohn, S., Storlie, C. B., Habermann, E. B., ... Liu, H. (2019). Deep learning and alternative learning strategies for retrospective real-world clinical data. Npj Digital Medicine, 2(1). doi:10.1038/s41746-019-0122-0
- Hwang, E. J., Park, S., Jin, K., Kim, J. I., Choi, S. Y., Lee, J. H., . . . Kang, M. (2018). Development and Validation of a Deep Learning–based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clinical Infectious Diseases, 69(5), 739-747. doi:10.1093/cid/ciy967
- Islam, M. T., Aowal, M. A., Minhaz, A. T., & Ashraf, K. (2017). Abnormality detection and localization in chest x-rays using deep convolutional neural networks. arXiv preprint arXiv:1705.09850.
- Jo, T., Nho, K., & Saykin, A. J. (2019). Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data. Frontiers in Aging Neuroscience, 11. doi:10.3389/fnagi.2019.00220
- Millard, J., Ugarte-Gil, C., & Moore, D. (2015). Multidrug resistant tuberculosis. BMJ: British Medical Journal, 350.
 Retrieved October 25, 2020, from https://www.jstor.org/stable/26520021
- Nardell E. A. (2015). Transmission and Institutional Infection Control of Tuberculosis. Cold Spring Harbor perspectives in medicine, 6(2), a018192. <u>https://doi.org/10.1101/cshperspect.a018192</u>