AGN feedback in Galaxy Clusters and Groups

Valeria Olivares & Yuanyuan Su University of Kentucky

Kentucky Academy of Science meeting / November, 6th 2021

PERSEUS GALAXY CLUSTER

200 kpc

CHANDRA/NASA/CXC/SAO/E/VLA

Planck Sample

Redshift: z < 0.35M₅₀₀: 7x10¹³ M_{\odot} — 2x10¹⁵ M_{\odot} 173 clusters: 69 CC + 104 NCC (Andrade et al. 2017)

Looking for X-ray cavities

0.5 - 2.0 keV image Elliptical double beta model Unsharp masked

Detection of cavities 11 CC clusters with clear cavities 17 CC clusters with potential cavities 1 NCC cluster with potential cavities 10 0 C cav. P cav.

Total detection fraction (CC+NCC): 17%

Detection fraction of the CC sub-sample: 40% (local galaxy clusters 20%-50%, Dong et al. 2010)

Cavity class

Detection fraction including all clusters and and consider detection only clusters that have Cav_{size>10kpc}: 8%, close to the high-z SPT sample (7%, $0.3 \le z \le 1.2$, Hlavacek-Larrondo et al. 2015)

Calorimeters

 $t_{cav} \sim 10^7 - 10^8 \text{ yr}$ $P_{cav} = E_{cav}/t_{cav} \sim 10^{42} - 10^{44} \text{ erg/s}$

ICM effect on the X-ray cavities

ICM effect on the X-ray cavities

ICM effect on the X-ray cavities

ICM effect on the X-ray cavities

ICM effect on the X-ray cavities

Disturbed clusters show asymmetric cavities - ICM weather? (Simulations by Mendygral et al. 2012)

ICM effect on the X-ray cavities

Disturbed clusters show asymmetric cavities - ICM weather? (Simulations by Mendygral et al. 2012)

ICM effect on the X-ray cavities

Disturbed clusters show asymmetric cavities - ICM weather? (Simulations by Mendygral et al. 2012)

ICM effect on the X-ray cavities

Disturbed clusters show asymmetric cavities - ICM weather? (Simulations by Mendygral et al. 2012)

Time

PERSEUS GALAXY CLUSTER

200 kpc

CHANDRA/NASA/CXC/SAO/E/VLA

PERSEUS GALAXY CLUSTER

 \sim 70 kpc

CHANDRA/NASA/CXC/SAO/E/VLA Fabian et al., Ha+NII emission (Conselice et al. 2001)

Are AGN bubbles crucial in the precipitation process?

11/11 clusters with "certain" cavities have cold gas

7/19 clusters with "potential" cavities have cold gas (including one NCC)

3/40 clusters without cavities have cold gas

Are AGN bubbles crucial in the precipitation process?

See also B. McNamara, H. Hu, Q. Yu talks!

Are AGN bubbles crucial in the precipitation process?

Uplifting mechanism likely the dominant mechanism of filament formation

In 9/15 clusters, filaments spatially correlate with the X-ray cavities

Revaz et al. (2008), Pope et al. (2010), Li et al. (2015, 2016, 2017), McNamara et al. (2016), Beckmann et al. (2019), Qiu et al. (2020, 2021)

Are AGN bubbles crucial in the precipitation process?

What about the rest of the cooling flow clusters?

- Another heating mechanism? (e.g. sloshing (Markevitch et al. 2001; Ritchie & Thomas 2002; ZuHone et al. 2010); cluster mergers (Roettiger et al. 1997; Gómez et al. 2002; ZuHone et al. 2010)
- Different timescales for dissipation of X-ray cavities and the Halpha filaments?
- A low number of counts?
- Projection effects?

The detection fraction of X-ray cavities is nearly the same across the cosmic time, suggesting an involution of the AGN feedback cycle.

Cavities are located in a large variety of dynamical state clusters, from merging, sloshing to relaxed clusters.

ICM weather may affect the distribution and morphology of the X-ray bubbles.

□ AGN feedback plays an important role in cold gas precipitation by uplifting mechanisms and increasing the turbulence of the gas.

Thank you

NASA/STScl / SDSS J103842.59+484917.7