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Introduction

Real World Applications

» Engineering applications:
» Small airplane wings/winglets
» Wind turbines
» Piezoelectric acoustic devices i.e. sound ducts
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Figures:
https://media.wired.com/photos/5955af5fad90646d424bb358 /master/pass/Gettylmages-498118341.jpg,
https://media.wired.com/photos/5d019ecca59542160d9c6275 /master/pass/science_wind-turbine_1130718980.jpg,
https://thermaflex.net/wp-content/uploads/2016/03/thermaflex-m-ke-flexible-duct.jpg
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Introduction

Our Goal

Blind applications of well-known numerical techniques for the
control of PDEs fail substantially.
Goals:

» To accurately discretize the PDEs for designing controllers.
Filtering by adding a numerical viscosity term (damping) is a
key!

» The system of PDEs may be complex and their discretizations
can even be more complex.

» Even the simplest case can take computer programs a
relatively long time to solve.

» We try to make the simulations faster and more accurately
using three different methods.
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Partial-Differential-Equation (PDE) Model

Vibrations on a string of length L =1

Let u(x, t) describe the shape of the centerline of the string at
(x, t). Then, the equation of motion is described by:

2
Ut + kyug — U — huee =0
~ ~——
viscous (weak) damping filtering term
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Partial-Differential-Equation (PDE) Model

Vibrations on a string of length L =1

Let u(x, t) describe the shape of the centerline of the string at
(x, t). Then, the equation of motion is described by:

2
Ut + kyug — U — huee =0
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Controlled clamped-free BC's :
{u(O, ) =0, ux(l,t)+ ku(lt) =0
~——

boundary control
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Partial-Differential-Equation (PDE) Model

Vibrations on a string of length L =1
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Here k; € R™, k3 € RT are the viscous damping and boundary
damping gains, respectively.
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Partial-Differential-Equation (PDE) Model

Vibrations on a string of length L =1

Let u(x, t) describe the shape of the centerline of the string at
(x, t). Then, the equation of motion is described by:

2
Ut + kyug — U — huee =0
~ ~——
viscous (weak) damping filtering term

Controlled clamped-free BC's :
{u(O, ) =0, ux(l,t)+ ku(lt) =0
~——

boundary control

Here k; € R™, k3 € RT are the viscous damping and boundary
damping gains, respectively.
The parameter h will be explained later.
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Partial-Differential-Equation (PDE) Model

Initial Conditions

We have six different sets of initial conditions, i.e. initial shape and
initial velocity of the string:

u(x,0) = up(x)
u(x,0) = u1(x), 0<x<lL
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Partial-Differential-Equation (PDE) Model

Initial Conditions

1. Sinusoidal-type

uog(x) = 103 sin W
u(x) = 10 3sin 7(2/@,211)“ ,
0<x<L=1

ks € RT, ks € RT are given as the normal mode displacement
coefficient and the normal mode velocity coefficient, respectively.
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Partial-Differential-Equation (PDE) Model

Initial Conditions

2. Box-type
( () 10_3,Cd—%<X<Cd+%
UplX) =
0,X<cd—%orx>cd+%
103, c, —2<x<c +%
up(x) = 1 1
O,x<c —z0orx>c +73
0<x<L=1, l<c<3 Lt<e<3

cqy € RT and ¢, € R are given as the centers of position and
velocity of the box, respectively.
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Partial-Differential-Equation (PDE) Model

Initial Conditions

3. Pinch-type

1—4|cy—x|
103
0X<Cd—forx>ccl—i—4
1—4|c,—x| B 1
TCV Z<X<CV+Z

0x<cv—%orx>cv+%

1
0<x<Ll=1, l<c<? i<o<3

, Cd —l<X<Cd+%
up(x) =
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Partial-Differential-Equation (PDE) Model

Initial Conditions

4. Square Wave Packets

o) AL \
R e S
L
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Approximations

Initial Conditions

5. Triangular Wave Packets

—1)x)— CDx+1 )=
wo(x) = 2|2(((2ks—1)x) 1[532@ Dx+3])|-1

212(((2ks—1)x)— | (2ks—1)x+21 | )| -1
un(x) = 2@ @1 }])
0 X<L:1
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Approximations

Initial Conditions

6. Sawtooth Wave type

uo(x) = 2((2ka—1)5— | (2ka—1)% | )1
2(( 2k571)571L0(32k571)5J)71 ‘ ’
u1(x) = : : Vv

103

0<x<L=1
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Approximations

Finite Difference Method
Consider the finite-differences in space-discretization such that
u(xj, t) ~ uj(t), where u(x;, t) is the approximations of u(x, t) at
x = xj. So, given N € N, we set h = ﬁ to discretize the interval
[0, L] as follows:
X0:0<X1:h<...<XN:/Vh<XN+1:L, (1)

where x; = jh,j =0,...,N + 1.

u(x,t)
uy (t o \ )
}\\ © w(®) = ulxy t)
u(t) © © o uy(t)
uo(t) o ©
= L
TN+1 h
| | L L | L L L L L
| —— T I B
0=x9 X1 x; cx; = i % Ax XN Xy41 =L
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Approximations

Discretized Model for the Wave Equation

Use the central difference formula at x = x;
t) ~ it (t)+uj—1(t)—2u;(t) |
~ = :

UXX(XJ‘,
Ui,tt+k1u,-’t_ % ~0

u(0,t) = uny1 — un + k3%H”N+1,t o

u;(0) = 10~ 3sin (W

u; ¢(0) = 107 3sin (W) Lo N a0

These discretizations are for the sinusoidal initial conditions, this
can be replicated for the other types.

Logan Stewart & Matthew Poynter Control of Vibrations



Approximations

Implementing an Indirect Filtering

—2uj s+ Ui—1¢
2

filtering by a viscosity term

=0

( . Ly uj
Ujy1—2ui+ui_ 2 Uj41t
Ui et + kit — 'Hhiz"l — koh

up = Un+1 — Uy + k3%u{V+1,t =0
u;(0) = 10_3sin(7(2k42_,\,1)m )
| 5i1(0) = 10 3sin(Z D™y - j— 12 N, t>0

Here, the control parameters are the same as before. We also add
the control parameter k» which represents whether the system has
a filtering term applied (ko is 0 or 1). Add this filtering term has
been shown to make solving the system easier without changing
the solutions.
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Approximations

Our Goal:

» Increasing the number of nodes N (or h — 0) in the
simulation for our discretizations, and try to make the
simulations faster.
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Approximations

Finite Element Method (Linear Splines) - Zuazua-Tebou,
2007

Consider the following discretization of the finite element method:

1 2 1
6Ui+1,tt + §Ui,tt + 6Ui—1,tt+k1Ui,t*

u(0,t) = unt1 — un + ks wii1,e =0
i=1,2,.,N, t>0

ujpy—2uitui_q o Uil e =2 tHui—1 ¢
! h2l 1 7k2h 5 h27 2 _0

The main difference between the finite element method and the
finite difference method is that the FEM works slower, but is
overall more efficient than the FDM. Therefore, there is a tradeoff
of efficiency with speed.
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Approximations

Order Reduction Finite Difference Scheme (unfiltered) -

Liu, 2020
Consider the following discretization of the Guo method without
filtering [1]:
1 1 1 ot
ZUi—i-l,tt + §Ui,tt + Zui_l’tt + kit — U'Hhilﬁu'_l =0
h h UN+1 uy -0
7 UN+L et + 7 YNt sty g ks N UN+LE =

i=1,2,..,N, t>0

This method gets rid of the filtering term present in both of the
equations, however it leads to a better efficiency of stabilization
compared to the other two algorithms. The tradeoff is that it takes
a lot longer to compute.
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Wolfram Demonstrations

Logan Stewart & Matthew Poynter Control of Vibrations



Wolfram Demonstration Projects

Past Code by D.J. Price (a former team member), Emma
Moore (current team member).

> Wave Equation
» Beam Equation
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https://demonstrations.wolfram.com/BoundaryControlOfA1DWaveEquationByTheFilteredFiniteDifferenc/
https://demonstrations.wolfram.com/BoundaryStabilizationOfEulerBernoulliAndRayleighBeamVibratio/
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Wolfram Demonstration Projects

Thanks for your attention.
Any questions?
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