Robust Filtering of the Approximations for the

Observability of Vibrations on a Three-Layer Beam

Ahmet Kaan Aydin®
Advisor: Dr. Ahmet Ozkan Ozer

November 3, 2021

1E-mail: ahmetkaan.aydin288@topper.wku.edu
This project is sponsored via KY NSF EPSCoR grant #3200002692-22-08.

Ahmet K. Aydin Observability of a Three-Layer Beam eq. November 3, 2021 1/21



© Continuous Model
@ The Exact Observability Inequality
@ Spectral Analysis
@ Gap Among the Eigenvalues

© Semi-Discretization
@ Semi-Discretized Model
@ Spectral Analysis
@ Lack of Uniform Observability
@ Direct Filtering
o Filtered Solutions

© Future Work

Ahmet K. Aydin Observability of a Three-Layer Beam eq. November 3, 2021 2/21



Three-Layer Mead Marcus Beam Model

Let dots and primes denote the differential operators % and a%' respectively.

342"~ By =0, (x,t) € (0,L) x R*

—C¢" + Pp =—Bz", (x,t) € (0,L) x RY
2(0,8) = 2(L,£) = 2(0, ) = 2"(L,£) = 0, te R+ (1)
¢'(0,t) = ¢'(L,t) =0, te Rt

z(x,0) = z(x), 2(x,0) = z1(x), x € (0,L)

Top Stiff layer

Complaint Layer

Bottom Stiff Layer

Figure: Three-layered beam
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(1) can be rewritten as,

7+ (1+ B2J)Z" =0, (x,t) € (0,L) x R
z(0,t) = z(L,t) = z"(0,t) =0, z’(L,t) =0, teR" (2)
z(x,0) = 2%(x), z(x,0) = z'(x), x € (0,L)

where J = (—CD? + P)~!

In comparison single-layer (Euler-Bernoulli) beam equation is,

z+2" =0, (x,t) € (0,L) x R
z(0,t) = z(L,t) = 2"(0,t) =0, z’(L,t) =0, teR" (3)
2(x,0) = 2°(x), 2(x,0) = (), x € (0,L)
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The Exact Observability Inequality

The energy, E(t), of (1) is defined as,

. 1t . _
E(t) = (= 2)I = 5 /0 D3P 4 |2+ (B22")D 2 (4)

(1) is a conservative system i.e. ag(tt) =0, therefore E(0) = E(t) Vt > 0.

The goal is to prove the exact observability by the following inequality:

/T /(L. £)]2dt > CE(0) (5)
0
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Spectral Analysis

Two main methods used to prove (5) are:
e Multipliers Method (Komornik ‘97)

e Spectral Analysis (Non-harmonic Fourier series) (Komornik-Loreti ‘05)
The eigenvalues of (2) are iu, where,

B2
=4 /14+ =) Vk >0
Mk + C)\k T p ks >

Pk = —H—k Vk <0

where A\, = (’%)2 are the eigenvalues of (3).
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Therefore, the solutions to (2) may be expressed as

(1) = 3 axeltsin <’”TLX) (6)

keZ*

Y AWANA
VATRVATAVERN IAVARVARY

Figure: Two different Fourier modes of a solution at fixed times.
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Idea: The uniform gap among eigenvalues of (3), ir;\éf [Am — An| > 0 can be used

to show the uniform gap among the eigenvalues of (2), il’;léf |tem — pin| >0

—— Three-Layer 600 { —— Three-Layer

—— Single-Layer —— Single-Layer
8000

6000

2000

Figure: For B =10, C = 0.1, P = 1 the eigenvalues (left) A\, and px. Gap among
consecutive eigenvalues (right).
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Theorem

Let g(x) : Rt — R™ be a differentiable function such that g’'(x) > 0 for

all x e RT. Let
f _B

Then for any a > 0,

Fx+a) — F(x) = g(x+a) — g(x) > 0

Hence,

tm — tn| = [Am — An| for all m,n € Z
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For any T > 0 there exist C = C(T) > 0 such that

/T 12(L, £)2dt > CE(0) (7)
0
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Semi-Discretization

L Consider the

Let N € N be given, and define mesh parameter h := e

following discretization of the interval [0, L]:
O=x<x1<..<x;=jh< .. <xy_1<xy<xyp1=1L

Let zj = z;(t) ~ z(x;, t), and Z = [z1, 22, ..., zn] T

Laser Observer

Figure: Space discretization of the z(x, t)
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A Special Matrix Ap

Consider the Finite-Difference approximation of Laplace equation,

Therefore,

where

Ahmet K. Aydin

e Zjy1 —2zj + 2

2 -1 0 ...

-1 2 -1 0 ...

0 -1 2 -1 O

0 .. 0 -1 2 -1
0 ... 0 -1 2
0 0 -1
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The space discretization of (2) is,

7+ (I 4+ BX(CAy+ PI)")A27=0, teR*t
Zg = zy4+1 =0, t e RT (9)
Z-1= —21, 2ZN+2 = —2N, te Rt

The energy of (9) defined as,
—1 —1y |2

(Ar 2)jin1 — (A4 2);
h

LB ((JhAhf)j+1 - (J,,A,,Z)J-> <(Ah_1z)j+1 — (Aﬁlf)j> (10)

Ziy1— 2
4+ |Z i
h

h N

Jj=1

h h

where J, = (CA + PI)~1.

Ahmet K. Aydin Observability of a Three-Layer Beam eq. November 3, 2021 13 /21



The eigenvalues of (9) are iu(h) where,

B2
h)=4/14+ ———~——=Xk(h k=1,2,..,N

pk(h) = —p—k(h), k=-1,-2,..,—N

where \i(h) = % sin? (%) are the eigenvalues of Ap,.
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—— PDE 600 4 —— PDE
8000 { —— Discrete-N=30 == Discrete-N=30
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Figure: For B= C = P =1, the first N = 30 (top) and N = 60 (bottom)
eigenvalues of (2) pk, and (9) uk(h) and gap among consecutive eigenvalues
(right)
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Lack of Uniform Observability

By using the identity (Infante-Zuazua ‘99)

Pk jr1—Pk,j 2
h

hy e

2L
2 T a— X\ (h)h (11)

Pk,N
h

where ¢y j = sin (JkT”h>
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Lack of Uniform Observability

By using the identity (Infante-Zuazua ‘99)

Pk jr1—Pk,j 2
h

N
th:o 2L

T a— X\ (h)h (11)

h

where ¢ ; = sin ( ) Observe that Ayh®> — 4 as h — 0.

For any T >0,

E
lim  sup & — 00 (12)
h=0 250/, of (9 fO ‘ZN‘ dt
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Direct Filtering
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Figure: For B = C = P =1, the first N = 30 (top) and N = 60 (bottom)
eigenvalues of (2) uk, and (9) uk(h) and gap after direct filtering.
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Filtered Solutions and Filtering Parameter

Given any ~ € (0,4) define the following solution space

Cn(v) = {zh sol. of (9)[Z= ) (akefﬂk(hﬁ)gk(h)} (13)

Ak(h)h2<y

Let v € (0,4), for any T > 0 there exist C = C(T,~) > 0 such that

T Zn 12
N =
/ ‘ﬂ dt > CE(0), Yz, e Ch(v) (14)
0
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@ Explicit representation of eigenvalues is not possible for some other
boundary conditions. Therefore the Multipliers method is necessary to
be utilized.

o The Mead-Marcus beam model has been generalized for arbitrary
number of layers. For n = 2m + 1 layers,

42" - BTF =0, (x,t)e(0,L)xRF
~C§"+ Py =—BZ", (x,t)€(0,L) x R*

where B is a m x 1 column vector with positive entries, P and C are
m X m invertible, symmetric, positive definite matrices.
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e Finding optimal filtering parameter ~y is an important requirement for
the real life applications.

@ Recent studies show that the exact observability can be retained
without any filtering by the use of “Order reduced Finite-Difference
scheme”. Similar approximation can be applied to the multi-layer case.
(Guo-Liu “20)
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