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Introduction

Scents are grouped into families based on

their verbal descriptions.
o These families include citrus, aromatic, woody,
oriental, green, leather, and floral.

In his Atlas of Odor Character Profiles (1985),
Andrew Dravnieks found the verbal

descriptions of 160 chemicals
o Hesurveyed about 140 people with 146
descriptors for each chemical
m Cinnamon was found to have 76%
applicability for Cinnamon Bark Oil

These descriptors can be used to group the
chemicals into their scent families.
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Past Work
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Many are working to connect quantifiable data to scent.
e Development of an Electronic Nose for Olfactory System Modelling using
Artificial Neural Network (2018) Roa and Fernandez
o Applied an e-nose to general odor classification
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® Analysis of Fragrances in Cosmetics by Gas (1995) Spectrometry and

Rastogi
o Applled gaS Chromatography teChniqueS to analyze diﬁcerent Figure 3. Analysis of the target fragrance substances in an eaude toilette (3-1714)
by GC-FID. rr 8.815 -- internal standard (citronellal), 10.099 - geraniol, 10.548

cosmetics, including lotions and perfumes — hydroxycitronellal, 11,124 ~ chmamic alcobal, 12.371 ~ eugenol.



Past Work (Cont.)

Keller, Gerkin, Guan, et.al’s “Predicting Human Olfactory
Perception from Chemical Features of Odor Molecules”

Keller's group worked to predict how humans would
perceive scents based off the chemical features
There is still no way to fully determine based of
appearance alone how a human olfactory system will
perceive a given chemical scent

In order to find similarities in scent, known fragrant
chemicals must be found to exist in multiple samples.
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ATLAS OF o
ODOR _ minty/peppermi
fragrant, cool/cooling
CHARACTER aromatic, sweet

® Olfactory perception of chemically diverse PROFILES
molecules (2016) Keller and Vosshall -

o Tested 480 chemicals with 55 humans to

show the correlation between chemical Prpeomint

structure and verbal description
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The Problem

e Howtogenerate averbal description of scent without human interaction, to show
the relationship between chemical structure and human perception
e Approach:

O
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Take the scents from the Atlas and categorize them into their scent families

Generate their respective chromatograms through Multisensory Gas Chromatography (MGC)
These will be the base for the convolutional neural network

Generate chromatograms for unknown scents

Use these to determine the scents of unknown scents

e \Neseektomeasure chromatograms and provide verbal description of scents.



Scent Family: Citrus

e [ hreechemicalsfromthe Atlas were found to

be consistent with the citrus family description.

o Thesewere:Limonene, Citral, and Citralva
e Citrusscents, for example, have notes of

lemon, orange, and grapefruit.
e T[heseareplots of the applicability of the
family.
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Scent Family: Floral

o Eighteen chemicals from the Atlas were
found to be consistent with the floral family
description.

e [loral scents, for example, have notes of
roses and lavender.

e T[hese are plots of the applicability of the
family.
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Scents from the Same Family

The verbal descriptions of scents
from the same family are similar.
These are both chemicals from the
woody family: Oneatic Ether (Top)
and Patchouli Oil (Bottom)

The woody family often has notes of
cedarwood and patchouli.
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Gas Column Chromatography _ ——

e (GCCcollectsdatabyusing the
apparatus to analyze scented

chemicals

o  Creates achromatogram for each scent 5
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Preliminary Experimental Results

— 601 ppm

e (Chromatographic data can be used to e

determine chemical structure. .
o  Thehigher the concentration, the higher
the peak.
o Thelarger the molecule, the wider the
peak.
o The heavier the molecule, the higher the
retention time
m Retentiontime defines the position
of the peak on the time axis.
o Some characteristic peaks are
distinguishable at concentrations higher

Voltage (V)

than the detection limit.

50 100 150 200 30

Retention Time



Chromatography and Scent

Three chemicals were chosen from each of three scent families for the gathering of
known data:
e Green
o 1-Hexanal, Diphenyl Oxide, and Hexanol

e Aromatic
o (-) Menthol, Eucalyptol, and Methyl Salicylate

e Floral
o Acetophenone, Hydroxy Citronellol, and Phenyl Ethanol
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Experimental Data - Same
Scent Family

These are signals from the green family.
e Asshown, the peaks have different retention times
and widths.
o  Unlabeled “peaks” fall below the detection
limit, and thus are just noise.
e Within the same scent family, our data shows similar
retention times.
o Inorderto solidify this statement, more tests
would need to be run with a wider range of
samples.
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Experimental Data -
Different Scent Families

These are signals from the floral (top) and

aromatic (bottom) families.
e Asshown, the peaks have different retention
times and widths.
o  Unlabeled “peaks” fall below the
detection limit, and thus are just noise.
e There are multiple dominant peaks for the
aromatic scent.
e Withinthe different scent families, our data
shows ranges of retention times for each family.
o Inordertosolidify this statement, more
tests would need to be run with a wider
range of samples.
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Validation run 5 times

» On each validation run, 1000 epochs
(trains on the same data 1000 times)

Average accuracy of 87.5%

Input is voltage curve
» 1000 evenly-spaced points taken from that curve
» Deep learning model performs a series of
transformations on the input to learn high-level
patterns and ultimately give the prediction for
scent family
« Model based on 1 dimensional convolutions



Future Work

Formulate the algorithm

Perform the experiment (again)
o  With unknown scents
o (Generates averbal description

Test the validity of the experiment

o Checkthat the generated description matches the manufacturer’s description
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