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Figure 1. Summary of hGMPK’s role in the cell. (A) hGMPK is positioned at the junction of the de novo 
nucleotide synthesis and salvage pathways. The enzymes inosine-5¢-monophosphate dehydrogenase 
(IMPDH) (9) and guanosine monophosphate synthase (GMPS) (10) are biomolecular targets for inhibition 
and are part of the de novo nucleotide synthesis pathway. (B) Schematic of the hGMPK reaction cycle 
following a random sequential mechanism (4, 8). 
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hGMPK: An Essential and Dynamic Enzyme

NMR and Timescales of Motion
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13C labeling of methyl groups will allow for 
measurement of methyl order parameters 

which are linked to side-chain entropy.
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NMR methods can probe the wide range of 
timescales of dynamics near physiological 

condition and at atomic resolution.

In this review, we present NMR spectroscopic techniques currently used to
study protein dynamics at various time scales. Instead scrutinizing each tech-
nique, we put emphasis on their fundamentals. On the other hand, we enumerate
a number of NMR-derived parameters and discuss their relation and relevance to
macromolecular motions. As a complement, we briefly describe several other
techniques capable of capturing protein dynamics, as synthesis of different meth-
ods is the most fruitful way to understand biomolecular processes.

2. MOTIONS AND TIME SCALES IN PROTEINS

Conformational motions in proteins span at least 14 orders of magnitude in terms
of time scales, from picoseconds to minutes/hours (Scheme 1).

An important reference point is the rotational correlation time of the protein
molecule itself, denoted tc, (also the notation tm is used) corresponding to the time
required for the molecule to rotate one radian (Scheme 1). The rotational motion/
diffusion of the molecule can be isotropic or anisotropic and depends on the size
and shape of the molecule as well as on solvent viscosity. Thus, in aqueous

Secondary structure
formation; 10 ns ↔ 1 ms

Protein folding
1 ms ↔ 1 h

Rotational diffusional
correlation time
1 ns < tc< 10 ns

t = tc
−1+ te

−1

te

Diffusion NMR

R1, R2, NOE

CPMG

RDC

1 min

1 s

1 ms

1 ns

1 ps1 y

1 m

1ms1 h

H/D
exchange

R1p

Backbone dynamics
1 ps ↔ 10 ns

Side-chain rotation
0.1 ps ↔ 10 ps

Aggregation
1 s ↔ 1 year

Loop, hairpin closure
0.1ms ↔ 10 ms

Catalysis
1ms ↔ 1 s

Scheme 1 The motional time scale of proteins covers over 14 orders of magnitude, starting from
the slowest one (formation of aggregates requires typically minutes to hours) up to the fastest
event; side-chain rotation (<ps). NMR-based techniques capable of capturing dynamics at
different time scales are shown boxed and positioned approximately at their relevant range of
time scales.
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Scan to see 
GMPK in 
action!

GMPK knockdown alters clonogenic potential of lung 
cancer cell lines but not HPL1D.

GMPK is a 
potential 

therapeutic target!

NMR methods can detect lowly populated state.
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Order parameter (S2) captures 
fast dynamics such as thermal 

motion of the N-H bonds.
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Role of internal 
dynamics in substrate 

recognition?

Proteins are dynamic, and their dynamic nature 
is critical to understanding their function. 

Outlook and Significance

Functional ensembles can be generated from dynamics studies. 
These are relevant in drug discovery as drug binding kinetics is 

highly dependent on protein conformational flexibility.

Comprehensive characterization of GMPK 
dynamics will uncover relationships 

between timescales of motions and their
role in catalysis and drug binding.


